skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Turcotte, Martin_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The competitive effect of one individual on another can have impacts beyond just reductions in performance. Because species plastically respond to their environment, competition can also induce changes in species traits, and in turn, these modified traits can then affect interactions with yet other individuals. In this context, plasticity is often argued to favor species coexistence by increasing the niche differentiation between species, though experimental evidence for this hypothesis that explicitly projects competitive outcomes is largely lacking. Here, we transiently subjected four annual plant species to early‐season intraspecific or interspecific competition to explicitly induce plastic responses and then examined the response of these individuals to competitors faced later in life. Competing with nearby individuals early in the growing season tended to amplify the sensitivity of individuals to competition, and particularly so for interspecific competition, but the strength of this effect depended on the identity of the focal species. This increase in interspecific relative to intraspecific competition caused plasticity to decrease the predicted likelihood of pairwise coexistence. By combining recent theory with a new experimental approach, we provide a pathway toward integrating phenotypic plasticity into our quantitative understanding of coexistence. 
    more » « less
  2. Abstract Field research can be an important component of the career trajectories for researchers in numerous academic fields; however, conducting research in field settings poses risks to health and safety, and researchers from marginalized groups often face greater risks than those experienced by other researchers in their fields; If these additional risks are not actively and thoughtfully mitigated, they are likely to hinder the participation of qualified investigators in field research and counteract efforts to improve and promote diversity, equity and inclusion in the field sciences.Here we provide, from our perspectives as co‐authors of a field safety manual for the Department of Biological Sciences at the University of Pittsburgh in Pennsylvania, United States, (A) background on risks and barriers that should be considered when planning and conducting field research and (B) suggestions on how to work as a collaborative team for developing an inclusive field safety manual.As an example of a manual this proposed process has yielded, we have included our own field safety manual written with diversity, equity and inclusion as a central focus.We hope this publication serves as a starting point for those interested in developing a similar document for use in their laboratory group, department or institution. 
    more » « less